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On the basis of asymptotic analysis of the complete Navier--Stokes and energy 
equations, using the Prandti number as the basic parameter of the expansion, 
the form of the velocity profile of free-convective flow is determined at large 
Prandtl numbers. 

Free convection of highly viscous liquids is characterized by the predominant influence 
of viscous forces over the inertial forces in the flow region. The Prandtl number, which is 
the ratio of the kinematic viscosity and the thermal diffusivity, determines the thermal 
boundary layer. Motion outside this layer occurs on account of entrainment of liquid from 
the surrounding medium. 

Insufficiently clear demarcation of these physical laws results in the discrepancy be- 
tween the theoretical [i] and experimental [2, 3] data for the velocity profiles of the free- 
convective flow around the vertical surface at large Prandtl numbers. In connection with 
this, the form of the velocity profiles for a highly viscous liquid is refined in the present 
work on the basis of asymptotic analysis of the complete Navier--Stokes and energy equations 
as Pr + ~. 

Free convection around a vertical plate with a specified constant heat flux at the 
surface is considered. The coordinate origin lies at the leading edge of the plate. The x 
axis is directed along the plate and the y axis along the normal to the plate. Dimensionless 
variables are used: the characteristic dimension L is chosen as the unit of length measure- 
ment; the current function is referred to ~Gr .3/5, and the excess temperature to Lqw/% , where 

is the kinematic viscosity, % is the thermal conductivity, and qw is the heat flux. Plane 
steady flow is described by the complete Navier--Stokes and energy equations in the Boussinesq 
approximation. It is assumed that the work of compression and viscous dissipation of the 
energy may be neglected [4]. In terms of dimensionless current functions and excess tempera- 
ture, the corresponding boundary problem takes the form 
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The solution of the boundary problem in Eqs. (I) and (2) is undertaken by the method of 
matchable asymptotic expansions by analogy with [5]. 

The whole flow region is divided into a thermal boundary layer and an external iso- 
thermal region of thickness of the order of Gr *-:/~, in which the viscous-friction force 
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The solution in the thermal boundary layer is written predominates over the inertial forces. 
in the form of an internal asymptotic expansion 
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O (x, y, Gr, Pr) = Gr-~Pr- tJSOo (x, Y) + Gr-~JsPr-~JsO~(x, y) + . . . .  

which is valid as Pr § ~ for fixed values of x, Y=vPri'SGr 115. Outside the thermal boundary 
layer, the solution is written in the form of the expansion 

(x, y, Gr, Pr) ~ Pr -~'s ~o (x, Z) + Gr -ijs Pr-3'5~l(X, Z) + . . . .  (4) 

which is valid as Pr + ~ for fixed values of x, Z = yGr I J5 

Substituting the expansions of Eqs. (3) and (4) into the boundary problem of Eqs. (1) 
and (2) and passing to the limit as Pr + = defines a series of boundary problems for the ex- 
ternal and internal expansions, interrelated by boundary conditions. Note that the basic 
parameter in the expansions is the Prandtl number. 

In the zero approximation, the external flux remains unperturbed on account of the 
boundary conditions at infinity. The boundary problem for the thermal layer in the zero 
approximation using the self-similar transformation 
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takes the form 
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The boundary conditions at the external boundary of the thermal layer are obtained by 
matching with the external expansion. The first approximation of the external expansion as 
Pr + ~ is described by a biharmonic equation with the boundary conditions 
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To refine the vertical position of the boundary layer relative to the leading edge, 
the longitudinal coordinate is deformed in the internal region 

X = X + f (X, Y)Gr -ij~ Pr -i'5, (9) 
and in the external region 

x -= X + [ (X, Z)Gr -~jS. (10) 

The deformation function is determined from the condition that the solution in the boundary 
layer remain self-similar and that the vorticity be zero at x = 0 [5] 

[ (X, Y) = a l Y  + ao X 115. (Ii) 

The deformation does not influence the zero approximation of the internal expansion and the 
first approximation of the external expansion, but complicates the form of the boundary con- 
dition for r (x, Y) 
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The system of equations for the first approximation of the internal expansion permits the 
self-similar transformation 
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Fig. i. Velocity distribution 
in the boundary layer when Pr 
i: i) boundary-layer theory; 
calculations from Eqs. (18) and 
(20) with x = 0.5, Pr = 2"103; 
2) n = l; 3) n = 2; 4) experi- 
mental results of [2] with Pr = 
1700, x = 0.5; 5) with Pr = 
2170, x = 0.25. 
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where Ft and Ht are determined by the system of ordinary differential equations 
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The process of constructing solutions may be continued up to the second approximation 
(inclusive). However, the accuracy of the existing experimental data means that it is 
superfluous to consider the subsequent approximation, and the corresponding results are not 
given here. 

The construction of the internal expansion is not unique. It must be complemented by 
terms corresponding to the intrinsic solution satisfying the zero boundary conditions 
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Then, the following equations are obtained for determining fk and gk 
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The solution corresponding to the first eigenvalue ~t = 5/4 takes the form 
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where ci =--2no [5]. 

From the solution in Eq. (8) for the first approximation of the external expansion in 
the case of a semiinfinite plate, it follows that infinite velocities exist far from the 
body. This is associated with an unavoidable singularity at infinity. Therefore, attention 
now turns to free convection around a plate of finite length, which is also used in 
experiments. The free-convective flux beyond the trailing edge of the plate is rearranged 
and in the remote wake takes the form of a plane floating jet. The velocity at the external 
boundary of the jet is zero [6]. In the transition zone, the damping of the longitudinal 
velocity may be approximated by a power function, which gives asymptotically correct values. 
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ConseqBently, the boundary conditions for a plate of finite length for the first approxi- 
mation of the external expansion are complicated, but nevertheless an analytic solution may 
be obtained as a result of integration 

l 
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where t = x + iZ. 

form 
The expressions for the velocity and temperature in the thermal boundary layer take the 
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The first term in Eqs. (19) and (20) corresponds to the result of boundary-layer theory, the 
second appears on account of deformation of the longitudinal coordinate, and the third corre- 
sponds to the first intrinsic solution. 

In Fig. i~ theoretical results are compared with experimental data on the velocity 
distribution of the free-convective flow when Pr >> i. The use of a power law of longitudi- 
nal-velocity damping at the external boundary of the thermal layer in the near wake gives a 
correct interpretation of experimental data on the velocity distribution when n = 2. 

The choice of Prandtl number as the basic parameter of the expansion allows an asymp - 
totic theory to be constructed such that the correct form is obtained for the velocity pro- 
files of free-convective flow of a highly viscous liquid, and allows higher-order correc- 
tions to the values of the heat-transfer coefficients to be obtained. 

NOTATION 

x, y, Cartesian coordinate system; ~, current function; T, temperature; Pr = ~/a, 
Prandtl number. Indices: w, wall; =, surrounding medium. 
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